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Abstract. The thermal conductivity of the (2+1)-dimensional NJL model in the presence of a constant
magnetic field is calculated in the mean-field approximation and its different asymptotic regimes are an-
alyzed. Taking into account the dynamical generation of a fermion mass due to the magnetic catalysis
phenomenon, it is shown that for certain relations among the theory’s parameters (particle width, tem-
perature and magnetic field), the profile of the thermal conductivity versus the applied field exhibits kink-
and plateau-like behaviors. We point out possible applications to planar condensed matter.

PACS. 65.90.+i Other topics in thermal properties of condensed matter – 44.10.+i Heat conduction –
44.05.+e Analytical and numerical techniques – 11.10.Kk Field theories in dimensions other than four

1 Introduction

It is now well established, from the study of many rel-
ativistic theories of massless fermions in the presence of
an external magnetic field, that a magnetic field can be
a strong catalyst for chiral symmetry breaking with the
consequent generation of a fermion dynamical mass even
at the weakest attractive interaction among fermions [1].
This magnetic catalysis (MC) of chiral symmetry breaking
has proven to be universal, its main features being inde-
pendent of the model under consideration (see Refs. [1–8]
for various aspects of this phenomenon). The universality
character of the magnetic catalysis has motivated many
recent works [5–13] aimed to apply it to diverse areas
of quantum physics. The essence of the MC effect lies in
the dimensional reduction of the fermion pairing dynam-
ics due to the confinement of these particles to their low-
est Landau level (LLL), when the pairing energy is much
less than the Landau gap

√
B (B is the magnitude of the

magnetic field induction). Under these circumstances, any
attraction between fermions, whenever small it might be,
is strengthened by the effective dimensional reduction in
the presence of the magnetic field, and therefore, a conden-
sate of fermion-antifermion is formed with the subsequent
generation of a fermion mass. The lowest LL plays in this
case a role similar to that of the Fermi surface in BCS
superconductivity [1].

a e-mail: incera@fredonia.edu

It is known that several quasiplanar systems have low-
energy excitation spectrum of quasiparticles (QP), char-
acterized by a linear dispersion, around the Fermi surface
consisting of isolated points. The dynamics of these QP
can be described by a “relativistic” quantum field the-
ory of massless fermions. When such Dirac-like QP are
electrically charged, they can couple to an externally ap-
plied magnetic field which can catalyze the condensation
of QP-antiQP pairs. Then, one would expect the realiza-
tion of MC in such a kind of condensed matter systems.
As a matter of fact, the MC was suggested as the possi-
ble explanation [8–12] for the profile of the thermal con-
ductivity in an applied magnetic field observed in recent
experiments in planar high-Tc cuprates [14–17]. The MC
has also been proposed [18] as the source of the semimetal-
insulator phase transition observed in the so-called highly
oriented pyrolitic graphites (HOPG) [19] in the presence
of a magnetic field.

Given that the heat transport is a convenient probe
to understand many basic properties of quasi-planar con-
densed matter systems, as gap structure, QP density, scat-
tering rate, etc, the study of heat transport in a quasi-
planar system subjected to MC may turn out physically
revealing. It is the goal of the present paper to study
how the MC affects the thermal transfer properties of
a (2+1)-dimensional fermion system under an applied
constant magnetic field. In particular, we calculate the
thermal conductivity of a system of QP described by
a (2+1)-dimensional Nambu-Jona-Lasinio (NJL) model
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which exhibits a mass (gap) generation for fermions in the
presence of a magnetic field, and discuss possible applica-
tions to planar condensed matter systems. To obtain the
results here reported, we used the same approximation of
a constant magnetic field that was already explored in ref-
erences [9,10]. However, our calculations deviate consider-
ably from what was done in these papers. Not only we take
into account the contribution of all Landau levels, but the
definition we use for the heat current itself is different. In
our formulation, when the gap induced by the magnetic
field is opened, the thermal conductivity exhibits a new
term proportional to σ2 (σ is the gap). Near the phase
transition point, the gap behaves like σ ∼ √

B −Bc in
the mean-field approximation. Hence, the term propor-
tional to σ2 yields a positive contribution in the slope of
the thermal conductivity, leading to a jump in the slope
of κ(B) at B = Bc (kink-like behavior). Notice that the
magnetic catalysis is mainly responsible for the kink ef-
fect, being the critical behavior of the gap an essential
factor for this result.

We underline that to obtain such a kink-like behavior,
it is crucial to go beyond the LLL contribution in the cal-
culation of the thermal conductivity, since, as we show, the
heat transfer takes place due to transitions between neigh-
boring LLs. Physically, this is easy to understand keeping
in mind that the spatial momentum of the QP lies in the
system plane. In the presence of a magnetic field perpen-
dicularly applied to the two-dimensional sample, the QP
spatial momentum is purely transverse and hence quan-
tized into discrete Landau levels. Therefore, the transfer
of kinetic energy can only occur by means of transitions
between Landau levels.

Even though our results were obtained by using a par-
ticular model, we point out that the main outcome of the
present work is of a more general and theoretical char-
acter, as we show that the MC phenomenon can be re-
sponsible for a kink-like effect in the thermal conductivity
of a whole class of (2+1)-dimensional relativistic fermion
systems. That is, we show that the kink effect is essen-
tially model independent, since it is determined by the
critical behavior of the dynamically generated mass near
the phase transition point. This fact makes the basic out-
come of our investigation relevant beyond the particular
model under consideration, linking it to the universality
class of theories with such a critical behavior. In connec-
tion with this we conjecture that, since the HOPG may be
described [18] by a model that belongs to the same uni-
versality class as that of the model used here, the HOPG
thermal conductivity in the presence of a magnetic field
should display similar kink-like behavior.

The plan of the paper is as follows. In Section 2 we
derive the expression for the thermal conductivity in the
(2+1)-dimensional NJL model in the presence of a con-
stant magnetic field and analytically study its different
asymptotics, underlying the possible application of each
result. In Section 3 we obtain the thermal conductivity
vs. magnetic field profile using numerical calculations. In
the reported graph, the change of slope in the thermal
conductivity profile is shown to occur at the critical mag-

netic field where the fermion dynamical mass is generated
at the given temperature. The conclusions and discussion
of potential applications of our results are presented in
Section 4. In Appendix A we derive the critical curve in
the B − T plane which separates the symmetric and the
symmetry-broken phases in the (2+1)-dimensional NJL
model, and study the scaling of the mass near the critical
curve. A derivation of the Kubo formula in the framework
of Matsubara formalism is given in Appendix B.

2 Thermal conductivity in the (2+1)-D
NJL model in the presence of a constant
magnetic field

2.1 General results

We start from the (2+1)-dimensional NJL Lagrangian
density in an external magnetic field

L =
1
2

[
ψ̄i, iγµDµψi

]
+

g

2N
(
ψ̄iψi

)2
, (1)

where Dµ = ∂µ − ieAext
µ is the covariant derivative and

the vector potential for the external magnetic field is
taken in the symmetric gauge

Aext
µ =

(
0,−B

2
x2,

B

2
x1

)
, (2)

and we assume that the fermions carry an additional flavor
index i = 1, . . . , N . In the case of d-wave superconductors
the number N is equal to 2nCuO, with nCuO denoting the
number of CuO planes per unit cell (N = 2 for planar
d-wave superconductors). For a single sheet of a HOPG
N = 2 too. The Dirac γ-matrices are taken in the reducible
four-component representation.

In the absence of the bare mass term mψ̄ψ, the
Lagrangian density (1) is invariant under discrete chiral
symmetry

ψ → γ5ψ, ψ̄ → −ψ̄γ5, (3)

which forbids the fermion mass generation in perturba-
tion theory. The appearance of the mass (energy gap)
is due to the spontaneous breaking of the above discrete
symmetry that leads to a neutral condensate of fermion-
antifermion pairs. In condensed matter physics this could
correspond to the condensation of excitons (electron-hole
bound states).

Introducing the composite field σ = −g(ψ̄iψi)/N , the
Lagrangian (1) can be written in the form

L =
1
2

[
ψ̄i, iγµDµψi

] − σψ̄iψi − Nσ2

2g
· (4)
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One readily verifies the equivalence of the Lagrangians
(1) and (4) by making use of the Euler-Lagrange equa-
tions (or performing the integration over the field σ in
the functional integral). The field σ has no dynamics at
the tree level, however, it acquires a kinetic term due to
fermion loops. The vacuum expectation value of σ gives
a dynamical mass (gap) to fermions. The effective action
for the composite field σ can be obtained by integrating
over fermions in the path integral (see Appendix A).

It is well known that in the absence of a magnetic field
and at zero temperature the mass generation occurs only
if the coupling constant exceeds some critical value [20].
This can be seen from the stationary equation for the
effective potential corresponding to the Lagrangian
density (1), which in leading order of 1/N -expansion is
given by

∂V (σ)
∂σ

= σ

[
σ − Λ√

π
+
Λ

g

]
= 0 (5)

(it follows from Eq. (A.4) in the limit B = T = 0).
In (5) we introduced the dimensionless coupling constant
g = Λg/π and Λ is the ultraviolet cutoff parameter.
The large-N expansion, originally borrowed from stud-
ies of dynamical symmetry breaking in a particle physics
context [20], is widely used in condensed matter prob-
lems [18,21,22] as a feasible technique that gives reliable
qualitative results at leading order even in cases where the
physical N corresponds to N = 2.

From equation (5) it is easy to see that there exists
a critical value for the coupling constant gc =

√
π such

that, if g < gc equation (5) has only the trivial solution
(σ = 0), while for the strong coupling limit g > gc a non-
trivial solution (σ̄ = Λ(g − √

π)/ g
√
π) is reached which

leads to the generation of a fermion mass. Hence, the crit-
ical coupling gc separates two phases: the weakly coupled
massless phase at g < gc and the strongly coupled massive
one (g > gc). An applied magnetic field changes the situ-
ation dramatically, so that the mass generation now takes
place at all g > 0 [1–4], hence the name magnetic cataly-
sis. At finite T and B �= 0 there is a critical curve in the
B − T plane separating the symmetric and the symmetry
broken phases (the derivation and analysis of the critical
curve in the B − T plane are given in Appendix A).

To derive an expression for the static thermal conduc-
tivity in an isotropic system we follow the familiar linear
response method and apply Kubo’s formula [23]

κ = − 1
TV

Im

∞∫
0

dtt
∫

d2x1d
2x2〈ui(x1, 0)ui(x2, t)〉, (6)

where V is the volume of the system, T = 1/β is the tem-
perature, and ui(x, t) is the heat-current density operator.
The brackets denote averaging in the canonical ensemble
with the density matrix ρ = e−βH/Z, Z = Tre−βH .

Physically the thermal conductivity κ appears as a co-
efficient in the equation relating the heat current to the
temperature gradient

u = −κ∇T (7)

under the condition of absence of particle flow. If we ne-
glect the chemical potential the heat density coincides
with the energy density, hence the quantity that satisfies
the continuity equation

ε̇(x) + ∇·u(x) = 0 (8)

can be interpreted as the heat current density. Equa-
tion (8) defines u to within a divergenceless vector,
which is sufficient for calculating the conductivity. The
vector u is obtained automatically from the Lagrangian
density (1) as

ui =
∂L

∂(∂iψ)
ψ̇ + ψ̄

∂L
∂(∂iψ̄)

=
i
2

(
ψ̄γi∂0ψ − ∂0ψ̄γiψ

)
. (9)

When using equations of motion the last expression can
be represented in the form

ui =
i
2

(
ψ̄γ0Diψ −Diψγ

0ψ
)
. (10)

At this point it is useful to underline that our definition of
the heat current does not coincide with the one used in ref-
erences [9,10], Pi(x) = ψγ0∂iψ− ∂iψγ

0ψ. Operator Pi(x)
cannot be obtained from equation (9) by using the equa-
tions of motion, unless the external field is zero, so it does
not lead to the correct thermal conductivity in the pres-
ence of a magnetic field. Note also, that our quantity ui

is explicitly gauge invariant in contrast to Pi.
The correlator of the heat currents (or polarization

function) in (6) is evaluated in the following way (see
Appendix B for details on the formalism). First, it is
computed in the Matsubara finite temperature formalism
replacing the time t by the imaginary time τ (t = −iτ):

Π(iΩm) =
1
V

β∫
0

dτeiΩmτ 〈TτUi(τ)Ui(0)〉,

Ui(τ) =
∫

d2xui(x, τ), Ωm =
2πm
β

· (11)

The thermal conductivity is then given by the discontinu-
ity of the retarded function ΠR(Ω), which is obtained by
analytic continuation from imaginary discrete frequencies
ΠR(Ω) = Π(iΩm → Ω + iε):

κ =
1

4T i
lim
Ω→0

1
Ω

[
ΠR(Ω + iε) −ΠA(Ω − iε)

]
. (12)
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Neglecting vertex corrections1, the calculation of the ther-
mal conductivity reduces to the evaluation of the bubble
diagram

Π(iΩm) = −T
∞∑

n=−∞

∫
d2k

(2π)2

× tr
[
γiiωnS(iωn,k)γi(iωn + iΩm)S(iωn + iΩm,k)

]
,

(13)

where S(ω, k) is the Fourier transform of the translation
invariant part S̃(x − y) of the fermion propagator in an
external magnetic field:

S(x− y) = exp


ie

x∫
y

Aext
λ dzλ


 S̃(x− y). (14)

Note, that the translation non-invariant phase of the
fermion Green’s function cancels in the computation
of Π . Defining a spectral representation for S(iωn, k), we
can write

S(iωn,k) =

∞∫
−∞

dωA(ω,k)
iωn − ω

· (15)

The spectral representation allows one to make analytic
continuation and find the retarded, SR, and advanced,
SA, Green functions according to the rule SR(ω+iε,k) =
S(iωn = ω+ iε,k) and SA(ω− iε,k) = S(iωn = ω− iε,k).
The spectral function A(ω,k) is given by

A(ω,k) =
1

2πi
[
SA(ω − iε,k) − SR(ω + iε,k)

]
. (16)

Plugging the spectral representation (15) into equa-
tion (13) the sum over Matsubara frequencies can be per-
formed 2. After this has been done, we can continue the
external frequencies to the real axis to getΠR(Ω). Finally,
we arrive at the following expression for the thermal con-
ductivity

κ =
1

32πT 2

∞∫
−∞

dωω2

cosh2 ω
2T

∫
d2ktr

[
γiA(ω,k)γiA(ω,k)

]
.

(17)
In order to compute κ we have to specify now the fermion
propagator. Since the fermion mass is generated in the
(2+1)-dimensional NJL model in a magnetic field already

1 It has been argued that for small impurity densities the
thermal conductivity, unlike the electric conductivity, is unaf-
fected by vertex corrections [24].

2 There is a subtle point here since the sum over frequencies
appears to be divergent. However, as was shown in [23], this
divergence results from an improper treatment of time deriva-
tives inside the time-ordered product of currents in (11). This
divergence disappears when the problem is treated more care-
fully. The prescription is simply to ignore it.

at weak coupling, we take the standard expression for the
massive fermion propagator in a magnetic field, decom-
posed over the Landau level poles [2,25]

S(ω,k) = e−
k2
eB

∞∑
n=0

(−1)n Dn(ω,k)
ω2 − σ2 − 2eBn

, (18)

where

Dn(ω, k) = 2(ωγ0 + σ)
[
P−Ln

(
2k2

eB

)
− P+Ln−1

(
2k2

eB

)]

+ 4kγL1
n−1

(
2k2

eB

)
(19)

with P± = (1 ± iγ1γ2)/2 being projectors and Ln, L
1
n

Laguerre’s polynomials (L1
−1 ≡ 0). Here σ is the fermion

dynamical mass obtained from the finite temperature gap
equation in a constant magnetic field (see Appendix A).

The spectral function according to (16) is found to be

A(ω,k) = e−
k2
eB

Γ

2π

∞∑
n=0

(−1)n

Mn

×
[

(γ0Mn + σ)f1(k) + f2(k)
(ω −Mn)2 + Γ 2

+
(γ0Mn − σ)f1(k) − f2(k)

(ω +Mn)2 + Γ 2

]
, (20)

where Mn =
√
σ2 + 2eBn and

f1(k) = 2
[
P−Ln

(
2k2

eB

)
− P+Ln−1

(
2k2

eB

)]
,

f2( k) = 4kγL1
n−1

(
2k2

eB

)
· (21)

Here, we introduced the width Γ of the quasiparticles,
which is due to interaction processes, in particular, scat-
tering on impurities, having replaced ε in (16) by a fi-
nite Γ . In general, the scattering rate Γ , which is defined
through the fermion self-energy, Γ (ω) = −ImΣR(ω), is
a frequency-dependent quantity (as well as temperature
and field dependent). It must be determined, like the dy-
namical mass, self-consistently from the Schwinger-Dyson
equations. At low temperatures we are interested in its
value at ω = 0, so we will consider it as a phenomenolog-
ical parameter.

In the absence of a magnetic field (B = 0) it can be
shown that the spectral function (20) reduces to

A(ω,k) =
Γ

2πE

[
γ0E − kγ + σ

(ω − E)2 + Γ 2
+
γ0E + kγ − σ

(ω + E)2 + Γ 2

]
,

E =
√

k2 + σ2, (22)
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hence, the retarded fermion Green’s function is

SR(ω,k) =
γ0(ω + iΓ ) − kγ + σ

(ω + iΓ )2 − k2 − σ2
· (23)

Straightforward calculation of the trace in (17), with
A(ω,k) from equations (20, 21) gives

tr
[
γiA(ω,k)γiA(ω,k)

]
=

16Γ 2N

π2
e−2k2/eB

∞∑
n,m=0

(−1)m+n+1

× (ω2 +M2
n + Γ 2)(ω2 +M2

m + Γ 2) − 4ω2σ2

[(ω2 +M2
n + Γ 2)2 − 4ω2M2

n]

× 1
[(ω2 +M2

m + Γ 2)2 − 4ω2M2
m]

×
(
Ln

(
2k2

eB

)
Lm−1

(
2k2

eB

)
+Ln−1

(
2k2

eB

)
Lm

(
2k2

eB

))
·

(24)

Performing now the integration over momenta in equa-
tion (17) produces Kronnecker’s delta symbols δn,m−1 +
δm,n−1 due to the orthogonality of Laguerre’s polynomi-
als, thus we get

κ =
eBΓ 2N

π2T 2

∞∑
n=0

∞∫
0

dωω2

cosh2 ω
2T

× (ω2 +M2
n + Γ 2)(ω2 +M2

n+1 + Γ 2) − 4ω2σ2

[(ω2 +M2
n + Γ 2)2−4ω2M2

n]

× 1
[(ω2 +M2

n+1+Γ 2)2−4ω2M2
n+1]

· (25)

Note that the factor eB in front of the right hand side of
(25) originated from integrating over transverse momenta
and gives the degeneracy of Landau levels (more exactly,
the degeneracy is NeB/2π for the lowest LL, n = 0, and
NeB/π for levels with n ≥ 1). We stress the important
result that because of the appearance of the mentioned
Kronnecker deltas only transitions between neighboring
Landau levels contribute into the heat transfer. Had we
restrict ourselves to the LLL as in [10], we would have
gotten zero result for κ.

Further summation over n in equation (25) can be per-
formed expanding the integrand in terms of partial frac-
tions. The resulting sums are expressed through digamma
functions by means of the formula

∞∑
n=0

[
A

n+ a
+

B

n+ b
+

C

n+ c
+

D

n+ d

]
=

− [Aψ(a) +Bψ(b) + Cψ(c) +Dψ(d)] , (26)

where for convergence A+B + C +D = 0.

After some algebraic manipulations the final expres-
sion for κ is written as follows

κ =
NΓ 2

2π2T 2

∞∫
0

dωω2

cosh2 ω
2T

1
(eB)2 + (2ωΓ )2

×
{

2ω2 +
(ω2 + σ2 + Γ 2)(eB)2 − 2ω2(ω2 − σ2 + Γ 2)eB

(ω2 − σ2 − Γ 2)2 + 4ω2Γ 2

− ω(ω2 − σ2 + Γ 2)
Γ

Imψ
(
σ2 + Γ 2 − ω2 − 2iωΓ

2eB

)}
.

(27)

This formula is the main result of our paper. Note that
it is independent of the particular model used to describe
the QP interactions unless we specify the dependence of
the dynamical mass on Γ, T, eB for a concrete model.

Another representation of equation (27) which is par-
ticularly convenient for studying the small width limit
Γ 	 T,

√
eB is

κ =
NΓ 2

4π2T 2

∞∫
−∞

dωω2

cosh2 ω
2T

1
(eB)2 + (2ωΓ )2

×
{

2ω2 +
(eB)2

2 + eBω(ω + σ)
(ω + σ)2 + Γ 2

+
(eB)2

2 + eBω(ω − σ)
(ω − σ)2 + Γ 2

+ eBω

∞∑
n=1

1
Mn

[
σ2 +M2

n + 2ωMn

(ω +Mn)2 + Γ 2

+
2ωMn − σ2 −M2

n

(ω −Mn)2 + Γ 2

]}
. (28)

It is obtained from (27) if one takes the series repre-
sentation of the ψ-function in the integrand of (27) and
writes the expression in the curved brackets in fractions
of 1/(Γ 2 + x2).

We are now in the position to study different asymp-
totic regimes defined by different relations among the di-
mensional parameters σ, Γ, T,B.

2.2 Zero magnetic field

First, we consider the limit of vanishing magnetic field
(B = 0). For that, one can use the formula for the asymp-
totic of ψ-function at large values of the argument

ψ(z) = log z − 1
2z

− 1
12z2

+
1

120z4
+O

(
1
z6

)
(29)

to get

κ0 =
N

4π2T 2

∞∫
0

dωω2

cosh2 ω
2T

×
[
1 +

ω2 − σ2 + Γ 2

2ωΓ

(
π

2
− arctan

σ2 + Γ 2 − ω2

2ωΓ

)]
·

(30)
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This expression describes the behavior of the ther-
mal conductivity as a function of temperature for massive
Dirac’s particles and is relevant for the supercritical phase
of the NJL model, where the mass is generated sponta-
neously even at zero magnetic field.

The last expression can be evaluated analytically in
two regimes, Γ 	 T :

κ0 
 N

8πT 2Γ

∞∫
σ

dω
ω

(
ω2 − σ2

)
cosh2 (ω/2T )


 Nσ2

πΓ
e−

σ
T , T 	 σ,

(31)
and Γ � T :

κ0

T

 N

3

[
Γ 2

σ2 + Γ 2
+

7π2

15
T 2Γ 2(Γ 2 + 5σ2)

(σ2 + Γ 2)3

]
· (32)

Accordingly, in the weak coupling phase of the NJL
model where the dynamical mass is not generated we ob-
tain:

κ0

T
=
N

π

[
9ζ(3)

4
T

Γ
+

ln 2
2
Γ

T

]
, Γ 	 T, (33)

and
κ0

T
=
N

3

[
1 +

7π2

15
T 2

Γ 2

]
, Γ � T. (34)

Equations (33, 34) up to an overall factor coincide with
the corresponding expressions obtained in reference [26]
for the vortex state of nodal quasiparticles in the d-wave
superconducting phase of high-Tc cuprates. The overall
factor there equals (v2

F + v2
∆)/vF v∆ where vF , v∆ are

respectively the velocities perpendicular and tangential
to the Fermi surface. They originate from the quasi-
particle excitation spectrum in the vicinity of the gap
nodes which takes the form of an anisotropic Dirac cone
E(k) =

√
v2

F k
2
1 + v2

∆k
2
2 . With the overall factor replacing

N (= 2 in real d−wave superconductor), the first term in
equation (34) reproduces the universal (or residual) ther-
mal conductivity at low T in the so-called “dirty” limit,
T 	 Γ , since it is independent of the impurity density,
thus it will not depend on the specific characteristics of
the scattering processes in the sample. The residual con-
ductivity was recently observed in experiments [27] con-
firming the existence of gapless quasiparticles in d-wave
cuprates at T < Tc. Note, however, that in contrast to
what was claimed in reference [28], the low-temperature
thermal conductivity for massive quasiparticles (Eq. (32))
does not exhibit a universal behavior when T → 0. This
peculiarity of the low-temperature thermal conductivity
can be used to find out experimentally the second gap in
cuprates.

Expressions (33, 34) were recently used to propose a
scenario for the arising of a plateaux at high magnetic
fields [26] in Krishana’s experiment. In that scenario the
width Γ of QPs becomes dependent on the field due to
scattering on disordered vortices, thus Γ becomes Γ0 +ΓB

where the field induced width ΓB is calculated to be
∼ √

B. All the information regarding the magnetic field is
encoded now in the total width Γ, hence the magnetic field

is not explicitly present. If we start with a weak magnetic
field, when ΓB 	 Γ0 	 T , the thermal conductivity fol-
lows first the expression (33) (weak field regime) decreas-
ing with the field. At some point, when Γ becomes of or-
der T a crossover takes place to the high field regime (34)
with plateaux. Physically, such a scenario is applicable
only if there is a small number of vortices with large dis-
tances between them and the magnetic field is basically
confined in tubes. However, for the field range of inter-
est, Hc1 	 B 	 Hc2, where Hc1, Hc2 are the lower and
upper critical magnetic fields of the high Tc superconduc-
tor respectively, the vortices are dense enough to overlap
strongly giving rise to an effective uniform magnetic field
in the whole plane [29], so the above scenario is not per-
haps the most appropriate for this field range.

2.3 Non-zero magnetic field

We shall analyze now the thermal conductivity in the pres-
ence of a uniform magnetic field in the whole plane. The
analysis in all cases will be made at fixed T and Γ , and we
do not assume the last one to be dependent on the field.

From the phase transition analysis of the (2+1)-
dimensional NJL model (see Appendix A) it follows that
at finite temperature there exists a critical value of the
magnetic field Bc(T ), above which the magnetic catalysis
phenomenon occurs generating a dynamical fermion mass
even at weak coupling (in what follows we consider only
the weak coupling case g � gc). For magnetic fields less
than the critical one (eBc(T ) ∼ 16T 2) the dynamical mass
is zero (σ = 0).

2.3.1 Narrow width

To study the narrow width limit Γ → 0, we replace the
fractions Γ/(Γ 2 + x2) in equation (27) by πδ(x). Then,
after integrating over ω, what is equivalent to evaluating
in the mass shell for the different LL, we obtain

κ 
 NΓ

4πT 2

{
(eB)2

(eB)2 + 4σ2Γ 2

σ2

cosh2 σ
2T

+
∞∑

n=1

(2eB)2n(σ2 + 2eBn)
(eB)2 + 4(σ2 + 2eBn)Γ 2

1

cosh2
√

σ2+2eBn
2T

}
,

Γ → 0. (35)

In (35) we kept Γ 2 in the denominators in order to be
able to reproduce a smooth behavior of κ(B) in the limit
B → 0. The origin of the first term in (35), whose essential
role in the kink-like behavior is discussed below, can be
traced back to the leading contribution of the zeroth to
first LL transitions. Note that it contributes only when the
dynamical mass is present, i.e. if σ �= 0. That is, because
the ratio Γ/((ω − σ)2 + Γ 2) appearing in equation (28)
becomes πδ(ω − σ) in this limit, it does not contribute
to (35) unless σ �= 0, due to the presence of the factor ω2

in the integrand of equation (27). This means that in the
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narrow width limit the magnetic catalysis is not only con-
nected to the generation of the mass, but it is responsible
also for the enhancement of the transitions between ze-
roth and first LLs. The fact that the thermal conductivity
is proportional in this limit to the scattering rate (width)
Γ means that it results from transitions of quasiparticles
between cyclotron orbits mediated by scattering of QPs
on impurities.

a. Weak field limit,
√
eB < 4T

Taking into account that at weak coupling no dynamical
mass is generated for fields below the critical value (eB <
eBc), we take σ = 0 in the calculation that follows. Making
use of the Euler-MacLaurin formula

1
2
F (0) +

∞∑
n=1

F (n) 

∞∫
0

dxF (x) − 1
12
F ′(0), (36)

expression (35) with zero dynamical mass can be recast
for subcritical fields

√
eB <

√
eBc ∼ 4T in the form

κ =
2NT 2

πΓ

∞∫
0

dxx5

cosh2 x

1

x2 +
(

eB
4TΓ

)2 · (37)

Equation (37) shows monotonic decreasing of κ with in-
creasing magnetic field B (at B = 0 it reproduces the
leading term in Eq.(33)). Note that the scale

√
4TΓ marks

the crossover point where the transition from superweak
(
√
eB �

√
4TΓ ) to weak (

√
4TΓ �

√
eB < 4T ) fields

takes place.

b. Strong field limit,
√
eB � 4T

We shall consider now the strong field regime,
√
eB � 4T ,

where a nonzero dynamical fermion mass is generated in
the weakly interacting system (we are interested mainly in
the region of coupling constants g � gc where the scaling
σ ∼ √

eB is achieved).
Let us start, however, analyzing the case of free mass-

less fermions (σ = 0). In this case, one can use equa-
tion (35), after evaluating it in σ = 0, to describe the very
large field (

√
eB � 4T ) behavior of κ in the narrow width

case, what yields an exponential fall of the conductivity

κ 
 8NΓeB
πT 2

e−
√

2eB
T . (38)

Coming back to the interacting case and after dropping
the term depending on Γ in the denominators of equa-
tion (35), we obtain

κ 
 NΓ

4πT 2

{
σ2

cosh2 σ
2T

+
∞∑

n=1

4n(σ2 + 2eBn)

cosh2
√

σ2+2eBn
2T

}
. (39)

In the limit of large fields (
√
eB � 4T ), the first term

in (39) is the leading one. Such a term would produce a
sharp plateau, were the fermion mass a constant. Since in
the model under consideration the mass is dynamical and
it behaves as σ ∼ √

eB at
√
eB � √

eBc 
 4T, the first
term gives rise to an exponential decrease as in the case of
free massless fermions (38) for asymptotically large fields.

c. Near the phase transition point, eB � eBc

In this case, the thermal conductivity can still be approx-
imated by equation (39). As shown in Appendix A, near
the mean field phase transition point σ ≈ 1

2

√
eB − eBc,

so if the field lies in the interval eBc < eB ≤ 2eBc, the dy-
namical mass σ � 2T and hence the cosh2 σ

2T appearing in
the first term of equation (39) is of order one. In this field
region the first term of equation (39) gives a positive con-
tribution to the derivative of κ close to the critical point.
That positive contribution leads to a jump in the slope of
κ at eB = eBc therefore showing a kink-like behavior for
κ in the narrow-width case.

2.3.2 Finite width

Let us consider now the case where the width Γ is small
but finite. We are particularly interested in the behavior of
κ near the phase transition point, where eB � eBc, and
therefore

√
eB > 4T , Γ, σ. From equation (25) one can

see that for these fields the contribution of transitions be-
tween Landau levels with n ≥ 1 in the integrand behaves
as 1/(eB)2,while the transitions between zeroth and first
LL decrease as ∼ 1/eB. However, the LL degeneracy is
also proportional to eB, what implies that the transitions
between the zeroth and first LL are not suppressed de-
spite the fact that the gap between levels grows with the
field. The leading in 1/eB behavior is easy to obtain from
equation (28). It is given by the expression

κ =
NΓ 2

4π2T 2

∞∫
0

dωω2

cosh2 ω
2T

{(
1 +

2ω(ω + σ)
eB

)
1

(ω + σ)2 + Γ 2

+
(

1 +
2ω(ω − σ)

eB

)
1

(ω − σ)2 + Γ 2

}
. (40)

As discussed in the previous subsection, near the transi-
tion the dynamical mass behaves as σ ≈ 1

2

√
eB − eBc, so

we can expand equation (40) around σ = 0 to obtain

κ =
NΓ 2

2π2T 2

∞∫
0

dωω2

cosh2 ω
2T

{
1 + 2ω2/eB

ω2 + Γ 2

+
σ2

(ω2 + Γ 2)2

[
3ω2 − Γ 2

ω2 + Γ 2
+

2ω2

eB

(
ω2 − 3Γ 2

ω2 + Γ 2

)]}
.

(41)

Clearly, for Γ <
√

3(2T ), the term proportional to σ2

gives a positive contribution to the derivative of κ with
respect to B near the transition point, so there is a jump
in the slope of κ at the critical point: a kink-like effect.
Notice that if σ were zero or constant, the derivative of
the thermal conductivity would satisfy dκ

deB 
 −C
(eB)2

,with
C positive, so no kink-like effect would be present. On
the other hand, since σ is dynamical, near the transition
point dκ

deB 
 α−β/eB+O((eB)−2), with α and β positive,
hence one can see that the dynamical mass not only allows
for a jump in the slope, but it flattens the profile after
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the critical field, allowing at least for certain region of
the parameter space a behavior of almost zero slope: a
plateau-like profile. This kink and plateau-like behavior is
corroborated by numerical calculations in the next section.

We highlight that the dynamical mass is needed to ob-
tain the kink-like effect in both narrow and finite width
cases. Hence, in our model the kink of the thermal con-
ductivity is directly linked to the magnetic catalysis phe-
nomenon. Moreover, any model with the same critical be-
havior for σ would lead to a similar effect. This means
that our results are indeed model independent, since any
relativistic theory of interacting fermions that belongs to
the universality class determined by the critical behavior
here considered would yield a similar kink-like feature.

One should note that the mean field behavior of the
dynamical mass σ ∼ √

eB − eBc may change if higher
order corrections (fluctuations) are taken into account in
the gap equation. The fluctuations could either change the
phase transition to a first order one, with a discontinuity
in σ at the phase transition point (this was a suggestion
made by Laughlin in [36]), or to a non-mean-field order
phase transition, with the scaling law σ ∼ (eB − eBc)ν

where ν > 1/2. While in the former case a discontinuity
will appear in the thermal conductivity, in the latter case
the conductivity will be a smooth function of the magnetic
field, and a singularity will move to its higher derivatives.

2.3.3 Low temperature limit

Finally, we give an expression for the thermal conductivity
when the temperature is much less than both Γ and eB.
At low T the function cosh−2(ω/2T ) in equation (27) is
very sharply peaked at ω = 0, thus, expanding the rest
of the integrand over ω and performing the integration
we get

κ =
NT

3

{
Γ 2

σ2 + Γ 2
+

7π2T 2Γ 2

5

×
[

3σ2 − Γ 2

(σ2 + Γ 2)3
+

2
eB

σ2 − Γ 2

(σ2 + Γ 2)2

+
2

(eB)2
σ2 − Γ 2

σ2 + Γ 2
− σ2 − Γ 2

(eB)3
ψ′

(
σ2 + Γ 2

2eB

)] }
. (42)

It is easy to see, using the asymptotic of the ψ−function
at large values of its argument, that when B → 0 the
expression (42) goes to equation (32) in spite of the fact
that we approach B = 0 from the side B > T . For large
fields we get

κ =
NT

3

{
Γ 2

σ2 + Γ 2
+

7π2T 2Γ 2

5

×
[

3σ2 − Γ 2

(σ2 + Γ 2)3
− 2
eB

σ2 − Γ 2

(σ2 + Γ 2)2

]}
. (43)

Note that at large eB the thermal conductivity would ap-
proach some constant value in the case of constant mass,

if σ > Γ , κ(B) approaches that asymptotical value from
below. This resembles the low T behavior of the thermal
conductivity in d−wave cuprates [30]. On the other hand,
if the mass σ is a dynamical one with asymptotic behav-
ior σ ∼ √

eB as in our four-fermion model, then κ(B)
goes to zero as 1/eB at large fields. This is different from
the thermal conductivity behavior for massless particles
which, neglecting T 3 corrections, tends to the universal
constant κ = NT/3 for σ = 0 at large B (see, Eq. (43)).

3 Thermal conductivity profile: numerical
calculations

In this section we do a numerical study of the profile of the
thermal conductivity versus the applied magnetic field,
taking into account the generation of the dynamical mass
at a critical field that depends on the temperature. The
field-dependence of the finite-temperature dynamical mass
is obtained from the solution of the gap equation (A.4)
derived in Appendix A.

To numerically investigate the behavior of the thermal
conductivity (27) within a parameter range that can be
of interest for condensed matter applications, we need to
restore all the model parameters, like �, c, kB, vF , v∆. Fol-
lowing reference [11] we write the Lagrangian density as

L =
1
2

[
ψ̄i,

(
iγ0

�
∂

∂t
+ vγj(i�

∂

∂xj
− e

c
Aj)

)
ψi

]
+
gv

2N
(ψ̄iψi)2, (44)

where vF and v∆ entering in v =
√
vF v∆ were defined in

the previous section, and the external potential is given
by equation (2). As known, this Lagrangian is equivalent
to

L =
1
2

[
ψ̄i,

(
iγ0

�
∂

∂t
+ vγj(i�

∂

∂xi
− e

c
Aj)

)
ψi

]

− σvψ̄iψi − Nσ2v

2g
, (45)

since the Euler-Lagrange equation for the auxiliary scalar
field σ obeys the constraint σ = −(g/N)ψ̄iψi so that
the Lagrangian density (45) reproduces equation (44)
upon application of this constraint. The effective action
for the composite field σ can be obtained by integrat-
ing over fermions in the path integral. From the mini-
mum condition of the effective potential V (σ) one finds
that, at fixed T , there is a critical value of the magnetic
field

√
eBc/T 
 4.1476 such that for subcritical fields

eB ≤ eBc the gap is zero, while for eB > eBc it is given
by the non-trivial solution of the gap equation (A.4) (see
Appendix A).

Notice that σv has dimension of energy and plays the
role of mc2 in the Dirac Lagrangian density. To generate
a plot of κ/κ0 (κ0 is the thermal conductivity at zero
field) versus the magnetic field, we need to substitute T →
kBT, Γ → �Γ, eB → (�v2/c)eB, where B is measured in
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Fig. 1. The magnetic field dependence of κ at T = 20 K
and T = 15 K in the narrow width case (Γ = 5 K). The
solid lines represent κ/κ0 when a QP gap σ is MC-induced at
B ≥ Bc(T ) (Bc(20) = 5.75 T, Bc(15) = 3.23 T). The dashed
lines represent the behavior of κ/κ0 when σ remains zero at
B ≥ Bc(T ).

Gauss. It is convenient to measure all energetic quantities
in degrees of K, what leads to the replacement eB →
0.8× 1010(v/c)2 ◦K2 ×B(tesla), where the magnetic field
is measured now in tesla’s. Thus, using the approximated
value of the characteristic velocity vD 
 107 cm/s [11–18],
eB → 2.92×102×◦K2×B(tesla), and we obtain the critical
curve B = 0.014T 2, which fits the experimental curve of
reference [14].

Let us numerically find the profile of κ versus the mag-
netic field at a fixed T . In Figure 1 κ (B) has been plotted
for two different temperatures taking into account the gen-
eration of the dynamical mass for eB > eBc. Here we cor-
roborate what we had already argued in Section 2 based
on the analytic result found for κ: due to the appearance
of σ at a critical field that depends on the temperature, κ
exhibits a kink behavior in its profile with the magnetic
field. Moreover, for B > Bc the kink is followed by a region
where κ is only weakly dependent on the field (plateau-
like region). With decreasing temperature, the position of
the kink moves to the left in accordance with the critical
line Bc = 0.014T 2.

The numerical calculations revealed the sensitivity of
the kink-plateau feature of the thermal conductivity to
the relation between Γ and T . Only when Γ was not much
smaller than T the thermal conductivity showed a kink-
plateau profile (in Fig. 1 the curves shown correspond to
the ratios Γ/T = 0.25 and 0.33).

4 Concluding remarks

In the present paper we studied the thermal conductiv-
ity of relativistic fermions in a (2+1)-dimensional four-
fermion interaction model as a function of the applied
magnetic field, the temperature and the particle width.
We have shown that, for certain relations among these
parameters, the profile of the thermal conductivity versus

the applied field exhibits a kink-like behavior at B 
 Bc,
where Bc is the critical field for the generation of a
fermion dynamical mass σ, followed by a plateau-like re-
gion at B ≥ Bc. We point out that the kink effect is
the consequence of two main features: the generation of
a fermion gap in the presence of the magnetic field (MC
phenomenon), and the enhancement of the zeroth-to-first
LLs transitions.

A main outcome of our investigation is that the rele-
vant properties of the thermal conductivity of the (2+1)-
dimensional relativistic QP system around the critical
point are model independent. Indeed, the essential ingredi-
ent of the effective model required to produce the kink-like
effect in the thermal conductivity is the critical behavior of
the dynamical mass induced by MC near the phase tran-
sition, so not much depends on the concrete form of the
effective Lagrangian. This fact makes our result relevant
beyond the particular model under consideration, linking
it to the universality class of theories with such a critical
behavior. Such an universal character opens a window for
possible applications.

From a quantum field theory viewpoint, condensed
matter systems whose Fermi surfaces are only charac-
terized by nodal points are especially interesting for us,
since at low energies they can be described by relativis-
tic quantum field theory models of massless fermions [32].
Along that direction, a feasible possibility for the appli-
cation of our results is the heat transport properties of
graphite in the presence of a magnetic field. Let us recall
that HOPG materials [19] have layered structure with two
isolated points in the Brillouin zone where the dispersion
is linear. Their electronic states can be thus described in
terms of relativistic charged particles [31]. This graphite
could exhibit the phenomenon of MC as suggested in ref-
erence [18] to explain the semimetal-insulator phase tran-
sition observed in HOPG in the presence of a magnetic
field perpendicular to the layers. As the quasiparticles in
the graphite are subjected to Landau quantization under a
perpendicularly applied magnetic field, our results should
have full strength there and we anticipate that the ther-
mal conductivity of these systems will show a behavior
similar to the one reported in the present work (for com-
putation of the electric conductivity in graphite along the
lines followed in the present work, see recent paper [33]).

On the other hand, the characteristic feature of d-
wave superconductors is also the existence of nodal points
(four in this case) where the order parameter vanishes,
thus the Fermi surface consists of four isolated points
with excitations around them being well-defined gapless
quasiparticles (QP). The kinetic part of the QPs effec-
tive Lagrangian is nothing but the Dirac Lagrangian for
two species of massless four-component spinors [34]. At
low temperatures such QPs give the main contribution to
thermodynamic and transport properties. There is now
considerable experimental evidence for the existence of
well-defined QPs in the superconducting state of cuprates
(see Ref. [35] and references therein).

As was mentioned in the Introduction, the MC has
been suggested [8–11] to be behind the odd behavior of the



406 The European Physical Journal B

thermal conductivity of high-Tc superconducting cuprates
in a magnetic field observed in the experiment [14,15,17],
although alternative solutions, not based on MC, has also
been proposed [26,36]. According to the experiment done
by Krishana et al. [14], and later reproduced by other au-
thors [15,17], at temperatures significantly lower than Tc

of superconductivity, the thermal conductivity κ(B), as
a function of a magnetic field perpendicularly applied to
the cuprate planes of the samples, displays a sharp break
in its slope (kink-like behavior) at a transition field Bκ,
followed by a plateau region in which it ceases to change
with increasing field up to the highest attainable fields
∼ 14 T. The critical temperature for the appearance of
the kink-like behavior scales with the magnetic field as
Tκ ∼ √

B similar to the scaling of the critical tempera-
ture with the field found in NJL models [2]. It is worthy
to mention here that the reliability of the thermal con-
ductivity experiments of Krishana et al. [14] has been a
matter of debate in the last years [16], although it seems
that finally the contradictory results have been clarified
and understood [17].

We emphasize that none of the previously men-
tioned [8–11,26,36] attempted explanations of Krishana’s
experiment were able to obtain on a theoretical basis the
kink-like behavior observed in the experiment [14]. In the
case of our results, although it is striking that, as discussed
in our previous paper [12] and shown in Figure 1, our
numerical curves exhibit a profile of the thermal conduc-
tivity with the applied magnetic field with similar qual-
itative characteristics3 to those observed in the experi-
ment [14], we cannot claim that our results are valid in
the vortex state of the superconductor since our calcula-
tions are based on the Landau level quantization, whose
applicability to the d-wave superconductor in the presence
of vortices has been recently subjected to intense criti-
cism [37–39].

Nevertheless, the mechanism of generating a kink-
like effect in the thermal conductivity via the MC phe-
nomenon, as studied in the previous sections, should be
relevant for condensed matter systems with Dirac-like
charged QP on which Landau level quantization is fea-
sible. In this direction, we would like to point out that
there is still some chance for the realization of MC in
cuprate systems. As it has been recently argued in ref-
erences [40,41], the physical picture underlying the de-
scription of superconducting cuprates may involve the in-
terplay of two different phases with their corresponding
order parameters: one dx2−y2 superconducting (DSC) and
one of density wave order (DDW). The DDW state, un-
like the DSC state, does not break gauge invariance, so the
quasiparticles of the DDW state can form Landau levels
under an applied magnetic field [41]. Although the above
scenario is still speculative and more experimental confir-

3 In addition to the kink-plateau behavior and the scaling
of the critical field with the temperature, our curves have an-
other similarity with the experimental behavior reported in
[14], namely, with decreasing T the crossing of the curves oc-
curs in such a way that the lower T curve reaches the higher
value at large fields.

mation is required, one can venture that given that the
charged QP excitations around the nodes of the DDW or-
der parameter have Landau levels, they can be subjected
to a MC phase transition at some critical magnetic field,
and hence our theoretical results could be relevant in that
case for the description of the heat transport properties of
the DDW-state in the magnetic field.
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Appendix A: Dynamical mass scaling near
the phase transition point

The effective potential of the (2+1)-dimensional NJL
model in a constant external magnetic field at finite
temperature was computed in [2]. The integration over
fermion fields in the functional integral with the La-
grangian (4) can be performed to give the effective po-
tential in the form

V (σ) =
Nσ2

2g
+
NeB

4π3/2

×
∫ ∞

0

dt
t3/2

e−tσ2
coth eBtΘ4

(
0| i

4πT 2t

)
= V0,B(σ) + VT,B(σ), (A.1)

where the temperature independent part of the potential
is given by

V0,B(σ) =
Nσ2

2g
+
NeB

4π3/2

∫ ∞

0

dt
t3/2

e−tσ2
coth eBt

=
N

π

[
1
2
M0σ

2 −
√

2(eB)3/2ζ

(
−1

2
,
σ2

2eB
+ 1

)
− σeB

2

]
,

(A.2)

(the mass scale parameter M0 = π/g − Λ/
√
π and Λ is

the ultraviolet cutoff which is taken much bigger than all
other parameters in the model) and the part depending
on temperature is

VT,B(σ) =
NeB

4π3/2

∫ ∞

0

dt
t3/2

e−tσ2
coth eBt

[
Θ4

(
0| i

4πT 2t

)
− 1

]
.

(A.3)

Here θ4(v|τ) is the Jacobi’s elliptic function.
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The gap equation dV (σ)/dσ = 0 follows from (A.1)

σ

[
− M0√

eB
+

1√
2
ζ

(
1
2
,
σ2

2eB
+ 1

)
+

√
eB

2σ
tanh

σ

2T

+

∞∫
0

dt√
πt

e−
σ2t
eB

e2t − 1

[
θ4

(
0| ieB

4πT 2t

)
− 1

] . (A.4)

The solution of this equation defines the fermion dynam-
ical mass. At T = 0, B = 0 the gap equation admits
a nontrivial solution only if the coupling g is supercrit-
ical, g > gc = π3/2/Λ (M0 < 0). The gap equation at
T = 0, B �= 0 was also studied in the literature (see, for
example, Refs. [1,2]). It was shown that it always has a
nontrivial solution at all g > 0 no matter how small the
magnetic field B might be. In the weak coupling phase
the field-induced dynamical mass at zero temperature be-
haves as σ0 = eB/2M0 in weak fields (

√
eB 	M0), while

at high fields (
√
eB � M0) it is σ0 
 0.446

√
eB. At fi-

nite temperature the critical line in the B − T plane sep-
arating the massless and massive phases was calculated
numerically in [2] (see also [11]). We shall derive here an
analytical solution of the gap equation near such a critical
line.

We start, actually, with the derivation of the Landau-
Ginzburg-like potential by expanding V (σ) in powers of σ,
since near the phase transition point σ is small, and write

V (σ) = V (0) − 1
2
M(T, eB)σ2 +

1
4
λ(T, eB)σ4.

As it is accustomed for second-order phase transitions,
the equality of the coefficient M(T, eB) to zero defines
the phase transition curve. The region of parameters T,B
where M(T, eB) > 0 corresponds to the spontaneously
broken phase with fermions acquiring the mass, whereas
the region M(T, eB) < 0 corresponds to the massless
phase. Our goal is to obtain the coefficients M(T, eB),
and λ(T, eB). When it is done the solution of the gap
equation is given by

σ2 =
M(T, eB)
λ(Tc, eB)

· (A.5)

From (A.5) we obtain the behavior of the dynamical mass
near the phase transition point (M(Tc, eBc) = 0). In par-
ticular, at fixed temperature and B → eBc we find

σ2(T = Tc, eB) =
M(Tc, eB)
λ(Tc, eB)


 d
deB

(
M(Tc, eB)
λ(Tc, eB)

)
B=Bc

(eB − eBc)


 1
λ(Tc, eBc)

d
deB

M(Tc, eB)|eB=eBc (eB − eBc) . (A.6)

The potential V0,B(σ) is easily expanded in powers of σ2.
Let us turn to VT,B(σ) which we write as the sum of two

terms

VT,B(σ) =
NeB

4π3/2

∫ ∞

0

dt
t3/2

e−tσ2
[
Θ4

(
0| i

4πT 2t

)
− 1

]

+
NeB

4π3/2

∫ ∞

0

dt
t3/2

e−tσ2
(coth eBt− 1)

[
Θ4

(
0| i

4πT 2t

)
−1

]
.

(A.7)

The second term in the last expression can be expanded in
a series in σ2 since the two brackets (with cotangent and
θ−function) regularize the behavior of the integrand at
infinity and zero, respectively. Thus we need to calculate
the first term∫ ∞

0

dt
t3/2

e−tσ2
[
Θ4

(
0| i

4πT 2t

)
− 1

]
=

2
∞∑

n=1

(−1)n

∫ ∞

0

dt
t3/2

e−tσ2− n2

4T2t

= 4
√

2Tσ
∞∑

n=1

(−1)n

√
n
K1/2

(nσ
T

)
=−4

√
πT log

(
1 + e−

σ
T

)
,

(A.8)

where Kν(z) is a modified Bessel function (K1/2(z) =
(π/2z)1/2e−z).

Finally, we obtain the following expressions for the co-
efficients

M(T,B) =
N
√
eB

π

{
− M0√

eB
+
ζ(1/2)√

2

+
√
eB

4T
+

√
eB

2
√
π

∫ ∞

0

dt
t1/2

(coth eBt− 1)

×
[
Θ4

(
0| i

4πT 2t

)
− 1

]}
, (A.9)

λ(T,B) =
N

π
√
eB

{
ζ(3/2)
4
√

2
+

1
48

(√
eB

T

)3

+
(eB)3/2

2π

×
∫ ∞

0

dtt1/2 (coth eBt− 1)

×
[
Θ4

(
0| i

4πT 2t

)
− 1

]}
. (A.10)

The critical curve M(T,B) = 0 can be analyzed analyti-
cally at T 	 √

eB where the integral in equation (A.9) is
exponentially small and for Tc we get the equation

√
eB

4Tc
=

M0√
eB

− ζ(1/2)√
2

· (A.11)

For the solution to exist, it must satisfy that
√
eB 	M0,

what gives the critical temperature

Tc 
 eB

4M0
=

1
2
σ0, (A.12)
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where σ0 ≡ σ(T = 0) is the dynamical mass at zero tem-
perature.

One can convince oneself that there is no solution of
the equation M(T,B) = 0 when Tc � √

eB. Indeed, for
that let us write the integral in (A.9) as

I =
∫ ∞

0

dt
t1/2

(coth eBt− 1)
[
Θ4

(
0| i

4πT 2t

)
− 1

]

=
1√
eB

∫ ∞

0

dt
t1/2

(coth t− 1)
[
Θ4

(
0| ieB

4πT 2t

)
− 1

]
.

(A.13)

We further divide the integrand into three pieces

I =
1√
eB

{∫ ∞

0

dt
t3/2

[
Θ4

(
0| ieB

4πT 2t

)
− 1

]

−
∫ ∞

0

dt
t1/2

(
coth t− 1

t
− 1

)

+
∫ ∞

0

dt
t1/2

(
coth t− 1

t
− 1

)
Θ4

(
0| ieB

4πT 2t

)}
.

(A.14)

The first and second integrals in the last expression can
be evaluated exactly (after changing the variable t → x2

in the first integral) with the help of the formulas [42]∫ ∞

0

dt
t3/2

[
Θ4

(
0| ieB

4πT 2t

)
− 1

]
= −4

√
π log 2

T√
eB

;

(A.15)∫ ∞

0

dt
t1/2

(
coth t− 1

t
− 1

)
=

√
2πζ

(
1
2

)
. (A.16)

The integral with Θ4−function is calculated using the
Jacobi imaginary transformation to Θ2−function and
keeping in it only the first term in the series when eB → 0:

Θ4

(
0| ieB

4πT 2t

)
=

√
4πT 2t

eB
Θ2

(
0|4iπT 2t

eB

)


 4

√
πT 2t

eB
e−

π2T2t
eB .

This reduces the third integral to∫ ∞

0

dt
t1/2

(
coth t− 1

t
− 1

)
Θ4

(
0| ieB

4πT 2t

)



4T
√
π√

eB

∫ ∞

0

dt
(

coth t− 1
t
− 1

)
e−

π2T2t
eB 


− 4
√
πeB

π2T
, B → 0 (A.17)

(when proceeding to the last equality we changed the vari-
able t to eBt and then expanded over eB).

Thus, combining all formulas we get the following ex-
pression for the M -function:

M(T,B) 

N
√
eB

π

{
− M0√

eB
+

√
eB

4T
− 2 log 2

T√
eB

− 2
π2

√
eB

T

}
.

As seen, there is no solution as eB → 0 for M0 > 0. (In
case eB = 0 and M0 < 0 we get the standard expres-
sion for the critical temperature Tc = |M0|/2 log 2 [20]).
Hence, we arrive at the conclusion that the only remaining
possibility is that the root of the equation M(T,B) = 0
is of the order of Tc 
 √

eB. However, in this case we
cannot expand the integral in equation (A.9) and should
turn to a numerical calculation. The root of the func-
tion M(T,B) when the parameter M0 
 0 is found to
be

√
eB/T 
 4.1476 what defines the critical line. For the

critical temperature this gives Tc 
 0.54σ0 in agreement
with the result of reference [2]. We calculated numerically
the coefficient before eB − eBc in equation (A.6) which
is found to be 0.2738, thus the scaling of the dynamical
mass near the critical line is given by the formula

σ 
 0.523
√
eB − eBc. (A.18)

Appendix B: Kubo formula

For the sake of completeness we derive here the expression
for the thermal conductivity in the two-dimensional case
used in Section 2. We start from the Kubo’s formula for
the thermal conductivity tensor [43]

κij(ω) =
1
V T

∞∫
0

dt

β∫
0

dλTr{ρUj(0)Ui(t+iλ)}e−iωt, (B.1)

where V is the space volume, T the absolute tempera-
ture, ρ is the density matrix, and Ui are the heat current
operators with

Ui(t) = eiHtUie−iHt. (B.2)

Integrating over t by parts in equation (B.1), and tak-
ing into account that the currents go to zero at t → ∞,
we obtain

κij(ω) =
1
V T

∞∫
0

dt
e−iωt − 1

iω

β∫
0

dλ
∂

∂t
Tr{ρUj(0)Ui(t+ iλ)}

=
1
V T

∞∫
0

dt
e−iωt − 1

ω
Tr{ρUj(0)[Ui(t) − Ui(t+ iβ)]},

(B.3)

where we used also the fact that the quantity under Tr is
a function only of t+ iλ.

Now, taking into account that

Tr{ρUj(0)Ui(t+ iβ)} =

Tr{ 1
Z

e−βHUj(0)eiHt−βHUi(0)e−iHt+βH}
= Tr {ρUi(t)Uj(0)} , (B.4)
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we obtain from (B.3) and (B.4) the known expression [44]

κij(ω) = − 1
V T

∞∫
0

dt
e−iωt − 1

ω
Tr{ρ[Ui(t), Uj(0)]}. (B.5)

Using that

Tr{ρUi(t)j(0)}† = Tr{U †
j (0)U †

i (t)ρ†} = Tr{ρUj(0)Ui(t)}
(B.6)

we have

Tr{ρ[Ui(t), Uj(0)]} = Tr{ρUi(t)Uj(0)} − Tr{ρUi(t)Uj(0)}†

= 2iImTr{ρUi(t)Uj(0)}. (B.7)

Then, we can write (B.5) as

κij(ω) = − 2i
V T

∞∫
0

dt
e−iωt − 1

ω
ImTr{ρUi(t)Uj(0)}. (B.8)

The thermal conductivity for an isotropic system is given
by κ = κii(0)/d where the summation over repeated in-
dices is understood (d is the number of space dimensions,
in our case d = 2). Equation (B.8) then takes the form

κ = − i
V T

∞∫
0

dt lim
ω→0

(
e−iωt − 1

ω
)ImTr{ρUi(t)Ui(0)}

= − 1
V T

Im

∞∫
0

dttTr{ρUi(t)Ui(0)}, (B.9)

which is equivalent to equation (6), or,

κ =
i

2V T

∞∫
0

dttTr{ρ[Ui(t), Uj(0)]}. (B.10)

In the representation of the Hamiltonian eigenfunctions,
e−iHt | n〉 = e−iEnt | n〉 we can write

Tr{ρUi(t)Ui(0)} =

∑
n,m

1
Z

{
eiHt+βHUie−iHt | n〉〈n | Ui | m〉〈m |

}

=
∑
n,m

1
Z

e−βEn+i(En−Em)t | 〈n | Ui | m〉 |2, (B.11)

where the hermiticity of the heat current operators was
used. Similarly

Tr{ρUi(0)Ui(t)} =∑
n,m

1
Z

e−βEn+i(Em−En)t | 〈n | Ui | m〉 |2 . (B.12)

Now using equations (B.11) and (B.12) and the symmetry
of the matrix elements under the interchange n ↔ m we
can write the correlator function in the form

G(t) = Tr{ρ[Ui(t), Ui(0)]} =
1
Z

∑
n,m

e−βEn+i(En−Em)t

×
(
1 − e−β(Em−En)

)
| 〈n | Ui | m〉 |2 . (B.13)

The retarded Fourier transform of G(t) is given by

G(Ω) =
1
2π

lim
η→0

∞∫
−∞

θ (t)G(t)eiΩt−η|t|dt

=
1
2π

1
Z

∑
n,m

e−βEn

(
1 − e−β(Em−En)

)
| 〈n | Ui | m〉 |2

× lim
η→0

∞∫
0

dtei(En−Em+Ω)t−ηt

=
1

2πi
1
Z

lim
η→0

∑
n,m

e−βEn

(
1 − e−β(Em−En)

)

× | 〈n | Ui | m〉 |2 1
Em − En −Ω − iη

· (B.14)

To obtain the spectral representation of G(Ω) we define

Θ(Ω) = lim
η→0

[G(Ω + iη) − G(Ω − iη)]

=
∑
n,m

1
Z

e−βEn

(
1 − e−β(Em−En)

)
| 〈n | Ui | m〉 |2

× δ(Em − En −Ω). (B.15)

From (B.14) and (B.15) we can write

G(Ω) = lim
η→0

1
2πi

∞∫
−∞

Θ(ν)
dν

ν −Ω − iη
· (B.16)

We can use this representation in order to express the
thermal conductivity in terms of the spectral density
Θ(Ω), which is an important step for the calculations in
the Green’s function formalism. Using the inverse Fourier
transform, we can write

G(t) =

∞∫
−∞

G(Ω)e−iΩtdΩ

= lim
η→0

1
2πi

∞∫
−∞

e−iΩtdΩ

∞∫
−∞

Θ(ν)
dν

ν −Ω − iη
, t > 0,

(B.17)
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and considering the integration formula

∞∫
−∞

eiωt

ω − iη
dω =

{
2πie−ηt, t > 0
0, t < 0 , (B.18)

the function G(t) can be transformed to

G(t) = lim
η→0

1
2πi

∞∫
−∞

Θ(ν)dν

∞∫
−∞

e−iΩt

ν −Ω − iη
dΩ

= lim
η→0

1
2πi

∞∫
−∞

Θ(ν)e−iνtdν

∞∫
−∞

eiωt

ω − iη
dω

= lim
η→0

∞∫
−∞

Θ(Ω)e−iΩt−ηtdΩ, t > 0. (B.19)

To express κ in terms of the spectral function we substi-
tute with (B.19) in (B.10), so we get

κ =
i

2V T

∞∫
0

dttG(t)=
i

2V T

∞∫
0

dtt lim
η→0

∞∫
−∞

Θ(Ω)e−iΩt−ηtdΩ

=
i

2V T
lim
η→0

∞∫
−∞

Θ(Ω)dΩ

∞∫
0

dtte−iΩt−ηt. (B.20)

Taking into account that the spectral function is an
odd function, Θ(ν) = −Θ(−ν), we can see that only

the imaginary part of
∞∫
0

dte−iΩt−ηtt remains, what leads to

κ = − π

2V T
lim
η→0

∞∫
−∞

Θ(Ω)
∂δ(Ω)
∂Ω

dΩ =
π

2V T
∂Θ(Ω)
∂Ω

∣∣∣
Ω=0

(B.21)
or equivalently,

κ =
π

4V T
lim
Ω→0

1
Ω

[Θ(Ω) −Θ(−Ω)] . (B.22)

From the representation (B.15) for the spectral function
it can be shown that the thermal conductivity (B.22)
can be expressed in terms of imaginary time Green’s
functions. Indeed, let us introduce the following thermal
Green function

Π (τ) = Tr{ρeHτUi(0)e−HτUi(0)} (B.23)

and its Fourier transform

Π (iωn) =

β∫
0

Π (τ) eiωnτdτ, ωn =
2πn
β
, n = 0, 1, 2, ...

(B.24)

Inserting the complete set of energy eigenstates |m〉, |n〉
we can perform the integration over τ as indicated in
(B.24), to find

Π(iωk) =
1
Z

∑
n,m

e−βEn | 〈n | Ui | m〉 |2 e−(Em−En)β − 1
En − Em + iωk

·

(B.25)
If we now define an analytical function Π(ω) in such a
way that at discrete points ω = iωk it coincides with
Π(iωk) and has a branch cut along the real axis, then the
spectral function (B.15) is related to the discontinuity of
Π(ω) across the cut

Θ(Ω) =
1

2πi
lim
ε→0

[Π (Ω + iε) −Π (Ω − iε)] . (B.26)

Substituting (B.26) in (B.22) we arrive to equation (10)
of Section 2.
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